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Abstract

The structure and energetics of superflow around quantized vortices, and the
motion inherited by these vortices from this superflow, are explored in the
general setting of a superfluid in arbitrary dimensions. The vortices may
be idealized as objects of codimension 2, such as one-dimensional loops
and two-dimensional closed surfaces, respectively, in the cases of three- and
four-dimensional superfluidity. By using the analogy between the vortical
superflow and Ampère–Maxwell magnetostatics, the equilibrium superflow
containing any specified collection of vortices is constructed. The energy of
the superflow is found to take on a simple form for vortices that are smooth
and asymptotically large, compared with the vortex core size. The motion
of vortices is analyzed in general, as well as for the special cases of hyper-
spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex
motion reflects vortex geometry. In dimension 4 and higher, this includes not
only extrinsic but also intrinsic aspects of the vortex shape, which enter via
the first and second fundamental forms of classical geometry. For hyper-
spherical vortices, which generalize the vortex rings of three-dimensional
superfluidity, the energy–momentum relation is determined. Simple scaling
arguments recover the essential features of these results, up to numerical and
logarithmic factors.

PACS numbers: 67.25.dk, 67.25.dg

1. Introduction and aims

First conceived of and analyzed by Onsager [1, 3] and Feynman [4, 5], quantized vortices
are topologically stable excitations of superfluid helium-4. They are manifestations of
quantum mechanics which owe their stability to the quantization law that the circulation
of superflow obeys, leaving their imprint at arbitrarily large distances. Vortex excitations play
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an essential role in determining the equilibrium properties of superfluid helium-4, especially in
the mechanism via which superfluidity is lost as the temperature is raised through the ‘lambda’
transition to the normal fluid state. They also play an essential role in the mechanism via which
the superflow in toroid-shaped samples is dissipated. For an in-depth account of the properties
of quantized vortices, see [6].

When the space filled by the superfluid helium-4 (i.e. the ambient space) is two or three
dimensional, and when they are viewed at lengthscales larger than their core size, quantized
vortices are, respectively, the familiar, geometrical point-like vortices of two-dimensional
superfluidity or line-like vortices of three-dimensional superfluidity. Motivated in part by the
issue of the impact of topological excitations on critical phenomena in superfluid helium-4, the
aim of the present paper is to examine some of the characteristic properties of quantized vortices
that are familiar in two- and three-dimensional superfluid helium-4, and to determine how
these topological excitations and their characteristic properties can be extended to situations
in which the superfluid (or any system characterized by broken global U(1) symmetry) fills
spaces having arbitrary numbers of dimensions. For the case of three dimensions, these
properties are analyzed in [7]. Properties that we shall address here include the structure
of quantized vortices and the flows around them, the motion that vortices inherit from such
flows (which we shall refer to as dynamics) and the flow energetics. We shall assume that the
vortices move with the superfluid velocity and that the mass of a vortex and the spectral flow
within it are negligible quantities1. As these assumptions are believed to be reasonable in two
and three dimensions [9], and we see no reason for them to be peculiar to any particular spatial
dimension, we shall assume that they hold in higher dimensions, too. In all dimensions, these
excitations (again, when viewed at lengthscales larger than their core size) continue to be
geometrical structures having codimension 2: their dimensionality grows with the dimension
of the ambient space, always remaining two dimensions behind. Nevertheless, we shall use
the terminology ‘quantized vortex’ (or, for simplicity, just ‘vortex’) for such excitations in all
dimensions, and not only two and three.

We have chosen to present our developments using the traditional language of vector and
tensor calculus. However, along the way we shall pause to mention how these developments
appear when formulated in the language of exterior calculus and differential forms; see [10].
This language is in fact tailor-made for the questions at hand, and enables a highly economical
development. However, we have not relied on it, as there may be readers for whom it would
require an unfamiliar level of abstraction.

This paper is organized as follows. In section 2, we discuss the structure of vortices in
a superfluid in arbitrary dimensions of space, first from the perspectives of lengthscales and
topology and then by developing the conditions that flows of a specific vortical content must
obey, in both the integral and the differential versions. In section 3, we introduce considerations
of kinetic energy, examining superflows of a given vortical content at equilibrium and solving
for the associated velocity fields of these flows. In section 4, we analyze the dynamics that
vortices inherit from the equilibrium flows associated with them. Here, we specialize to
asymptotically large, smooth vortices, for which the dynamics turns out to be a simple and
clear reflection of the intrinsic and extrinsic geometry of the shapes of the vortices. To illustrate
our results, we consider the velocities of spherical and hyper-spherical vortices, as well as
the small-amplitude excitations of planar and hyper-planar vortices. In section 5, we return
to issues of energetics and determine the equilibrium kinetic energy of superflows containing
individual vortices in terms of the geometry of the shapes of the vortices. We illustrate
this result for large, smooth—but otherwise arbitrarily shaped—vortices, for which a simple,

1 For an authoritative account of vortex dynamics, including the issues of vortex mass and spectral flow, see [8].
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asymptotic formula holds, and we give an elementary argument for this asymptotic formula.
Here, we also address the energetics of maximally symmetrically shaped spherical and
hyper-spherical vortices, and we use our knowledge of the energies and velocities of the
spherical and hyper-spherical vortices to determine their momenta and, hence, their energy–
momentum relations. In section 6, we use scaling and dimensional analysis to obtain the
aforementioned results, up to numerical factors and logarithmic dependences on the short-
distance cutoff, i.e. the core size of the vortices. We end, in section 7, with some concluding
remarks. We have streamlined the presentation by relegating to a sequence of appendices
much of the technical material.

2. Structure of superfluid vortices in arbitrary dimensions

2.1. General morphology of vortices

We consider a large, D-dimensional, Euclidian, hyper-cubic volume � of a superfluid, with
each point in � being specified by its D-component position vector x, the Cartesian components
of which we denote by {xd}Dd=1. On the faces of �, we suppose that all fields obey periodic
boundary conditions. We shall be concerned with flows of the superfluid in �, and we describe
these via their D-vector flow fields V(x). The phenomena that we shall be addressing occur
on lengthscales larger than the characteristic superfluid coherence- or healing-length ξ , which
determines the lengthscale over which the superfluid density falls to zero as the center of a
vortex is approached (i.e. the vortex core size).

Provided we do indeed examine flows on lengthscales larger than ξ , and hence restrict our
attention to long-wavelength, low-energy excitations of the superfluid, the amplitude |�(x)| of
the complex scalar superfluid order parameter field �(x) can be taken to be a nonzero constant
|�0| away from the vortices. In addition, these vortices can be idealized as being supported on
vanishingly thin sub-manifolds of the ambient D-dimensional space. The remaining freedom
lies in the phase factor �(x)/|�(x)| of �(x), and—except on vortex sub-manifolds, where
it is not defined—this takes values on the unit circle in the complex plane. Owing to the
topology of the coset space (in this case, the unit circle) in which this phase factor resides,
and specifically the fact that its fundamental homotopy group �1 is the additive group Z

of the integers n = 0,±1, . . . , these vortices are indeed topologically stable defects in the
superfluid order [11]. The strength n of any vortex is the number of times the phase factor
winds through 2π as the vortex is encircled a single time. For D-dimensional superfluids,
and at the lengthscales of interest, these vortices are supported on manifolds of dimension
D − 2, a combination that will occur frequently, so we shall denote it by /D . Said another way,
the vortices reside on codimension-2 sub-manifolds of a D-dimensional space, which means
that we would have to add two further dimensions to ‘fatten’ each vortex into a space-filling
object. In any dimension D � 2, there are one-dimensional closed paths that loop around
the vortices. As we shall discuss shortly, the circulation of the flow around such loops is
quantized and nonzero, whereas the circulation around closed paths that do not loop around
a vortex is zero. In the familiar case of superfluids in three dimensions, the vortices are
geometrical objects that are supported on one-dimensional sub-manifolds (see figure 1). The
loops that encircle the vortices, along which the circulation of the flow is quantized, are also
one-dimensional objects2. In the equally familiar case of superfluids in D = 2, each vortex is
a pair of opposing-circulation zero-dimensional objects (i.e. a structure that is usually called

2 The vortices themselves are closed loops that may or may not wind through the boundaries of the sample, a
possibility allowed by the D-torus topology of the sample. This topology arises from the adopted periodic boundary
conditions but will not play a significant role here.
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Figure 1. Vortices in three-dimensional superfluids. They form closed one-dimensional loops,
possibly via the periodic boundary conditions.

a vortex/anti-vortex pair). The loops around one or other member of the pair, however, along
which the circulation of the flow is quantized, remain one dimensional. (Strictly speaking,
in D = 2 each vortex is supported on a pair of points, which is not a manifold, but we shall
admit this abuse of nomenclature.)

Our main objectives are to explore the spatial structure and energetics of flows possessing
a set of vortices at prescribed locations, as well as the motion that such flows confer on the
vortices themselves. The flows that we shall consider are states of thermodynamic equilibrium,
but are maintained away from the no-flow state, V = 0, because they are constrained to have
a prescribed vortical content.

2.2. Fixing the vortical content of superflows

The circulation κ of the flow along any one-dimensional closed contour is defined to be the
line integral of the corresponding velocity field along that contour:

κ :=
∮

Vd(x) dxd. (1)

Here and throughout this paper, a summation from 1 to D is implied over repeated indices
such as d, d1, etc. The vortical content of the flow can then be prescribed via the following
condition. For a vortex of strength n, the circulation κ is quantized according to the number
of times N the contour encircles the /D (i.e. (D − 2))-dimensional sub-manifold supporting
the vortex:

κ = (2πh̄/M)Nn, (2)

where h̄ is Planck’s constant and M is the mass of one of the particles whose condensation
causes superfluidity. We adopt units in which h̄/M has the value unity. In the language of
differential forms, the flow field is described by the 1-form V(x), and the quantization of
circulation (2) is expressed as∮

V = 2πNn. (3)

4



J. Phys. A: Math. Theor. 42 (2009) 185001 P M Goldbart and F Bora

We shall be concerned with vortices of unit strength (i.e. n = 1). Owing to the linearity of
the theory, results for higher strength vortices can be straightforwardly obtained from those
for unit-strength vortices via elementary scalings with n (i.e. velocities scale linearly with n;
energies scale quadratically).

For a flow V to have the prescribed vortical content, it must be expressible as a sum of
two contributions:

(i) a real vector field V (x) that is singular on any vortex-supporting sub-manifolds and has
the appropriate quantized circulation around them, and thus its contribution to the flow
includes the flow’s vortical part;

(ii) the gradient of a real, scalar phase field �(x) that is smooth and single valued throughout
�. Owing to the latter property, this component of the flow is capable of contributing
only to the irrotational (i.e. circulation-free) aspects of the flow.

Thus, we consider flows of the form

Vd(x) = Vd(x) + ∇d�(x), (4)

in which the gradient ∇d denotes the partial derivative ∂/∂xd with respect to the dth spatial
coordinate xd . (The ∇d� term carries a dimensional factor of h̄/M , which we set to unity,
earlier.) In the language of differential forms, equation (4) is expressed as

V = V + d�, (5)

where d� is the exact 1-form that results from taking the exterior derivative of the 0-form (i.e.
the function) �.

To ensure that the vortical part V of the flow V has the appropriate circulation on loops
surrounding any vortex-supporting sub-manifolds, it must obey the following inhomogeneous
partial differential equation:

εd1···dD
∇dD−1VdD

(x) = 2πJd1···d/D
(x), (6)

where εd1···dD
is the completely skew-symmetric D-dimensional Levi-Civita symbol.

Equation (6) is a natural generalization to D-dimensions of the static version of the three-
dimensional differential expression of the Ampère–Maxwell law relating the magnetic field
(the analogue of V ) to the electric current density (the analogue of J ), which in suitable units
reads as

curl V = 2πJ. (7)

An account of the analogy between superfluidity and magnetostatics for the case of
three dimensions is given in [12]. An extension of electrodynamics, which allows for
extended, string-like sources and necessitates the introduction of rank-2 skew-symmetric
gauge potentials, was developed by Kalb and Ramond [13] in the context of string theory. A
more general extension, to settings involving arbitrary spacetime dimensions and p(> 1)-form
gauge potentials, has been discussed by Teitelboim [14] and Henneaux and Teitelboim [15].

The source field in equation (6), J , is a completely skew-symmetric, rank /D tensor field,
which obeys the divergencelessness condition3 ∂d1Jd1···d/D

(x) = 0, i.e. the consistency condition
that follows, e.g., from the application of ∂d1 to equation (6). (We discuss this point further in
appendix A) This field J encodes the singularity in the density of the vorticity associated with
any /D-dimensional vortices in the superflow. The factor of 2π in equation (6) is extracted to
ensure that unit-strength sources gives rise to unit quanta of circulation. That V must obey
equation (6) follows from the integral form of this law, equation (2), which can be obtained

3 We have chosen to use the term divergenceless for fields obeying the associated condition, but we could equally
well have chosen to use instead divergence free, solendoidal or transverse.
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s
R(s)

Figure 2. A loop vortex in a three-dimensional superfluid specified by R(s) with arc-length
parameter s, showing the direction of the source ‘electrical current’ along the loop and the sense
of the superflow encircling the loop.

from equation (6) via the D-dimensional version of the Stokes theorem. The right-hand side
of equation (2) is the flux of the source J (x) through the corresponding closed contour. (In
its integral form, the three-dimensional Ampère–Maxwell law dictates that the line-integral
of the magnetic field along a loop in a three-dimensional space has a value determined by
the flux of the electric current threading the loop.) The skew-symmetric tensor nature of the
source field J , present for D � 4, is a natural generalization of the vectorial nature of J

present in D = 3, and reflects the corresponding higher-than-one-dimensional geometry of
the sub-manifold that supports the vortex, as we shall discuss shortly.

In the language of differential forms, equation (6) is expressed as an equality of /D -forms,
i.e.

� dV = 2πJ, (8)

where dV is the 2-form that results from taking the exterior derivative of V , the form � dV is
the /D -form dual to it that results from applying the (Eucidian) Hodge-� operator to it and J

is the source /D -form. The dual of this equation, which is an equality of 2-forms obtained by
applying � to it, reads as

dV = �(2πJ). (9)

In the language of differential forms, the divergencelessness of the source J , mentioned shortly
after equation (7), amounts to J being a closed form, i.e. dJ = 0.

What value should the source field J have if the D-dimensional flow is to contain a single,
unit-strength, quantized vortex? Recall that for D = 3 (so that /D = 1), the vortex is one
dimensional and supported on the curve x = R(s1), parameterized by the single variable s1

(see figure 2). In this case, the source takes the value

J(x) =
∫

ds1
dR

ds1
δ(3)(x − R(s1)) , (10)

associated with the analog of a unit-strength electrical current flowing along the curve and
supported on it. The sign of this analogue of the current (i.e. its direction around the loop)
determines the sense in which the superflow swirls around the vortex core, via a right-hand
rule. Observe that the geometry of the line enters not only in terms of the curve R(s1) on
which the vortex is supported, but also via the tangent vector to this curve, dR/ds1. The
geometrically natural extension of the source to arbitrary dimension D involves

6
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T1 2T

R(s)

O

Figure 3. A two-dimensional vortex sub-manifold in a four-dimensional superfluid. T1 [= ∂1R(s)]
and T2 [= ∂2R(s) ] are two coordinate tangent vectors to the sub-manifold at the point R(s). These
tangent vectors define a ‘patch’ of the sub-manifold.

(i) concentrating the source on the appropriate /D-dimensional sub-manifold;
(ii) specifying the shape of this sub-manifold, via x = R(s), where s denotes the set of the

/D variables {s1, s2, . . . , s/D } that, when they explore their domains, trace out the idealized
core of the vortex; and

(iii) endowing the source with an appropriate geometrical content, via the natural
generalization of the tangent vector.

This generalization is provided by the oriented, /D-dimensional (tensorial) volume
εa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
(where ∂a denotes the partial derivative with respect to the a th

independent variable that parameterizes the vortex sub-manifold, in this case, ∂/∂sa) of the
parallelepiped constructed from

{
∂R/∂sa

}/D

a=1, i.e. the set of /D linearly independent, coordinate
tangent vectors to the sub-manifold at R(s). Together with the measure d/Ds, this volume plays
the role of an infinitesimal segment of a vortex line (in D = 3) or a patch of a vortex area (in
D = 4, as sketched in figure 3). Here, εa1···a/D

is the completely skew-symmetric /D-dimensional
Levi-Civita symbol, in contrast with the D-dimensional εd1···dD

, which we defined shortly after
equation (6). Thus, for the case of a /D-dimensional vortex in a D-dimensional flow, the source
takes the form

Jd1···d/D
(x) =

∫
d/Dsεa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
δ(D)(x − R(s)), (11)

where summations from 1 to /D are implied over repeated indices a1, a2, etc. We show in
appendix A that this form of the source does indeed describe a generalized vortex of unit
vorticity, in the sense that the circulation of the superflow computed on any one-dimensional
loop that surrounds the source a single time is unity (up to a sign that depends on the sense in
which the loop is traversed). Furthermore, this form of the source obeys the condition of being
closed, i.e. ∂d1Jd1···dD−2(x) = 0, as we also show in appendix A. In the language of differential
forms, equation (11) is expressed as

J (x) =
∫

d/Dsδ(D)(x − R(s)) (∂1R) ∧ (∂2R) ∧ · · · ∧ (∂/DR). (12)

It is also useful to consider the dual of the source, namely the completely skew-symmetric
rank-2 field:

7
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1N

dR/ds

N 2

Figure 4. A segment of a vortex in a three-dimensional superfluid, showing the tangent unit vector
dR/ds and two normal unit vectors N1 and N2. The pair N1 and N2 can be chosen to be the
normal and binormal vectors of the Frenet–Serret frame.

2
TT

2N

R(s)

O

N 1

1

Figure 5. A two-dimensional vortex sub-manifold in a four-dimensional superfluid. Two tangent
vectors, T1 and T2, and two normal vectors, N1 and N2, at the pointR(s), are shown.

� JdD−1dD
(x) := 1

/D!
εd1d2···d/D dD−1dD

Jd1···d/D
(x)

= εd1···dD−1dD

/D!

∫
d/Dsεa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
δ(D) (x − R(s)). (13)

Let us pause to analyze the factor

[/D!]−1εd1···dD−1dD
εa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
(14)

from the integrand of equation (13) and hence to introduce some useful geometrical ideas.
Being a skew-symmetrized (over the spatial indices d1, d2, etc) product of the set of vectors
{∂aR}/Da=1 tangent to the sub-manifold at the point R(s), the skew-symmetrization over indices
associated with the sub-manifold coordinates (via εa1···a/D

) is elementary, yielding a factor of
/D!, so that the factor can equally well be written as

εd1···dD

(
∂1Rd1

) · · · (∂/DRd/D

)
. (15)

Being orthogonal to the plane tangent to the manifold (i.e. the plane spanned by the vectors
{∂aR}/Da=1), this factor can be expressed in terms of a skew-symmetric product of any pair, N1

and N2, of unit vectors that are mutually orthogonal and orthogonal to the tangent plane (see
figure 4 for an example in D = 3 and figure 5 for an example in D = 4), i.e. as(

N1
dD−1

N2
dD

− N1
dD

N2
dD−1

)
B, (16)

8
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in terms of a coefficient B. To determine B (up to a sign associated with orientation), we take
the formula (

N1
dD−1

N2
dD

− N1
dD

N2
dD−1

)
B = εd1···dD

(
∂1Rd1

) · · · (∂/DRd/D

)
, (17)

and fully contract each side with itself to obtain

B2 = 1

2
εd1···d/D dD−1dD

(
∂1Rd1

) · · · (∂/DRd/D

)
εd̄1···d̄/D dD−1dD

(
∂1Rd̄1

)· · ·(∂/DRd̄/D

)
= (

δd1d̄1
δd2d̄2

· · · δd/D d̄/D − δd1d̄2
δd2d̄1

· · · δd/D d̄/D + · · · )
× (

∂1Rd1

)· · ·(∂/DRd/D

)(
∂1Rd̄1

)· · ·(∂/DRd̄/D

)
= +

(
∂1Rd1

)(
∂1Rd1

)(
∂2Rd2

)
(∂2Rd2) · · · (∂/DRd/D

)(
∂/DRd/D

)
− (

∂1Rd1

)(
∂2Rd1

)(
∂2Rd2

)(
∂1Rd2

) · · · (∂/DRd/D

)(
∂/DRd/D

)
+ · · ·

= det g, (18)

where ga′a are the components of the induced metric g on the vortex sub-manifold, also known
as the first fundamental form [16], and are defined via

ga′a(s) := ∂Rd(s)

∂sa′

∂Rd(s)

∂sa

. (19)

Thus, for the geometric factor (14) we obtain√
det g

(
N1

dD−1
N2

dD
− N2

dD−1
N1

dD

)
, (20)

and for the components of the dual source field �J we obtain

� JdD−1dD
(x) =

∫
d/Ds

√
det g

(
N1

dD−1
N2

dD
− N1

dD
N2

dD−1

)
δ(D)(x − R(s)) . (21)

The measure d/Ds
√

det g is the infinitesimal area element on the vortex sub-manifold R(s). In
the language of differential forms, equation (13) is expressed as

� J (x) =
∫

d/Ds
√

det g
(
N1 ∧ N2)δ(D)(x − R(s)) . (22)

3. Equilibrium superflows of a given vortical content

In this section, we introduce energetic considerations and show that—provided we adopt a
suitable choice of gauge for the rotational part V of the flow—the irrotational contribution to
the flow ∇� is zero in the equilibrium state. After that, introduce a convenient gauge potential
A and use it to solve for the flow in the presence of a given vortical content, the latter being
specified by a suitable source term. The gauge potential is a rank-/D , skew-symmetric tensor,
precisely analogous to the vector potential of three-dimensional magnetostatics.

3.1. Minimization of superflow kinetic energy

We take the energy of the system to be entirely associated with the kinetic energy of the
superflow. As we address flows possessing a prescribed set of vortices, the energy associated
with the absence of superfluidity in the cores of the vortices will not play a significant role.
We assume that the mass–density of the superfluid ρ is constant, i.e. we take the fluid to be
incompressible. The energy ρE associated with the flow V can therefore be specified in terms
of the functional

E := 1

2

∫
�

dDxVd(x)Vd(x), (23)

which, for convenience, we shall refer to as the energy, despite the missing factor of ρ.

9
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To determine the equilibrium flow in the presence of some prescribed vortical content,
we regard V in equation (4) as fixed and minimize E with respect to �. The corresponding
stationarity condition reads as

0 = δE

δ�(x)
= δ

δ�(x)

1

2

∫
�

dDx̄[Vd(x̄) + ∇d�(x̄)][Vd(x̄) + ∇d�(x̄)] (24)

= −∇d(∇d�(x) − Vd(x)), (25)

where we have used the periodic boundary conditions on V and � to eliminate boundary terms,
and thus arrive at an overall condition of divergencelessness on the flow V . Now, V obeys
equation (6), and is therefore not unique, being adjustable by any gradient of a scalar. This
gauge freedom permits us to demand that the rotational part of the flow itself be divergenceless,
i.e.

∇dVd = 0, (26)

and we shall impose this demand. Thus, from equation (25) we see that the minimizer � is
harmonic, i.e. ∇d∇d� = 0, and subject to periodic boundary conditions. Thus, � is a constant,
and does not contribute to the equilibrium flow V , which is given by V alone, the latter obeying
equations (6) and (26). Thus, the flow has energy (ρ/2)

∫
dDxVdVd . (Minimization, and not

just stationarity, of the energy follows directly from the positive semi-definiteness of the second
variation of E.)

3.2. Fixing the complete flow: equilibrium state at a given vortical content

To solve equation (6) in terms of the source and, more particularly, the location of the singular
surface R(s), we take advantage of the divergencelessness of V (equation (26)). This allows
us to introduce a gauge field A, which is a completely skew-symmetric rank-/D tensor field, in
terms of which V is given by

VdD
(x) = εd1···dD

∇dD−1Ad1···d/D
(x). (27)

We may subject this gauge field to a gauge condition, and the one that, for convenience, we
adopt, is the transverse condition:

∇d/D
Ad1···d/D

(x) = 0. (28)

In the language of differential forms, equations (27) and (28) are expressed as

V = � d A and dA = 0. (29)

To solve for A, we insert V , expressed in terms of A, into equation (6), to obtain

εd1···dD
∇dD−1εd̄1···d̄D−1dD

∇d̄D−1
Ad̄1···d̄/D

= 2πJd1···d/D
. (30)

We then contract the two ε symbols, which yields a [(D − 1)! termed] sum of products of
(D − 1) Kronecker deltas, signed with the signature of the permutation π̂ , i.e.

εd1···dD
εd̄1···d̄D−1dD

=
∑

π̂
sgn(π̂)δd1π̂(d̄1) · · · δdD−1π̂(d̄D−1), (31)

and employ the skew symmetry of A and the gauge condition (28) to arrive at the generalized
Poisson equation, namely

/D!∇d∇dAd1···dD−2(x) = 2πJd1···d/D
(x). (32)

By virtue of the adopted gauge condition, equation (32) has the Cartesian components of A

uncoupled from one another. Lastly, we introduce the D-dimensional Fourier transform and
its inverse, defined as

f (q) =
∫

�

dDxe−iq·xf (x), (33)

10



J. Phys. A: Math. Theor. 42 (2009) 185001 P M Goldbart and F Bora

f (x) =
∫

d̂Dq eiq·xf (q), (34)

where q is a D-vector and d̂Dq := dDq/(2π)D , and apply it to equation (32) to take advantage
of the translational invariance of the Laplace operator. (We implicitly take the large-volume
limit, and thus the inverse Fourier transform involves an integral over wavevectors rather than
a summation.) Thus, we arrive at an algebraic equation relating the Fourier transforms of the
gauge field A and the source J , which we solve to obtain

Ad1···d/D
(q) = −2π

/D!

Jd1···d/D
(q)

q · q
. (35)

Inverting the Fourier transform, A(q), yields the real-space gauge field

Ad1···d/D
(x) = −2π

/D!

∫
d̂Dq

eiq·x

q · q
Jd1···d/D

(q), (36)

from which, via equation (27), we obtain the Fourier representation of the real-space velocity
field:

VdD
(x) = −2π

/D!
εd1···dD

∫
d̂Dq

iqdD−1 eiq·x

q · q
Jd1···d/D

(q). (37)

For a source J given by a single vortex, as in equation (11), we have the following, more
explicit form for the velocity field:

VdD
(x) = −2π

/D!
εd1···dD

∫
d̂Dq

iqdD−1

q · q
e−iq·x

∫
d/Dsεa1···aD−2

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
eiq·R(s). (38)

As shown in appendix B, the q integration may be performed, yielding the result

VdD
(x) = 1

2π/D/2

�(/D/2)

(/D − 1)!
εd1···dD

∫
d/Dsεa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

) (x − R(s))dD−1

|x − R(s)|D , (39)

in which �(z) is the standard gamma function [18].
Formula (39) for the velocity field V gives the structure of the superflow at any point

x in the superfluid in terms of the shape R of a vortex. In the following sections, we shall
deploy this formula to address the following issues: the velocity conferred by this flow on
vortices themselves, the velocity of hyper-spherical vortices, the dispersion relation for small
deformations of hyper-planar vortices, the superflow kinetic energy for vortices of an arbitrary
shape and the energy–momentum relation for hyper-spherical vortices.

4. Dynamics of vortices in arbitrary dimensions

4.1. Motion of vortices: asymptotics and geometry

We have already established the flow field in the presence of a vortex (equation (38)). We now
examine the velocity U(�) that this flow confers on points x = R(�) on the vortex itself:

UdD
(�) := VdD

(x)

∣∣∣∣∣
x=R(�)

= 1

2π/D/2

� (/D/2)

(/D − 1)!
εd1···dD

×
∫

d/Dsεa1···a/D
∂a1Rd1(s) · · · ∂a/D

Rd/D
(s)

(R(�) − R(s))dD−1

|R(�) − R(s)|D . (40)

Observe that the integral in equation (40) is logarithmically divergent; physically, it is
regularized via the short-distance cutoff ξ .

We now determine the leading contribution to the velocity in a regime in which the
characteristic linear dimension of the vortex and the radii of curvature of the sub-manifold

11
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supporting the vortex are large, compared with ξ . In this limit, the dominant contribution to
the integral is associated with small values of the denominator. As we show in appendix D,
the asymptotic behavior of U(�) is given by

UdD
(�) ≈ 1

/D!

�(/D/2)

2π/D/2

1√
det g

A/D ln(L/ξ)εd1···dD
εa1···a/D

×
{

−1

2

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)(
∂b∂b′RdD−1

)
ḡbb′

− (
∂b′RdD−1

)(
∂a1Rd1

) · · · (∂b∂am
Rdm

) · · · (∂a/D
Rd/D

)
ḡbb′

+
1

2

(
∂bRd̄

)(
∂b̄∂b̄′Rd̄

)(
∂a1Rd1

) · · · (∂a/D
Rd/D

)(
∂b′RdD−1

)
×(

ḡbb̄ḡb′b̄′ + ḡbb̄′ ḡb̄b̄′ + ḡbb′ ḡb̄b̄′
)}

, (41)

in which all terms, such as gradients of R, the metric tensor g and the inverse ḡ of the metric
tensor, are evaluated at the point � on the vortex sub-manifold, and the repeated indices b, etc,
are summed from 1 to /D . The factor A/D is the surface area of a /D-dimensional hyper-sphere
of unit radius4.

The asymptotic approximation to the velocity U(�) of the vortex has a simple, geometrical
structure to it. This structure becomes evident via the introduction, at each point � of the
manifold, of a pair of vectors N1(�) and N2(�) that are normalized, orthogonal to one
another and orthogonal to the tangent plane to the vortex sub-manifold at R(�), as made after
equation (15). The vectors N1 and N2 span the manifold of dimension 2 complementary
to the vortex sub-manifold, playing the role played by the normal vector of a hyper-surface
(i.e. a sub-manifold of codimension 1). The choice of the vectors N1(�) and N2(�) is not
unique; alternative linear combinations of them, provided the pair remains orthonormal to
one another and orthogonal to the tangent plane, will do equally well. However, what is
independent of this choice, is unique and, from a geometric perspective, is the natural object
is the skew-symmetric product of N1(�) and N2(�), namely the 2-form

N := N1 ∧ N2, (42)

the components of which are given by

Nd1d2 := N1
d1

N2
d2

− N1
d2

N2
d1

, (43)

already featuring in equation (16) et seq. As we show in appendix E, the right-hand side of
equation (41) can be expressed in terms of the components of the N1 ∧N2 2-form, which then
reads as

Ud(�) ≈ h̄

2M
ḡaa′Ndd ′(∂a∂a′Rd ′) ln(L/ξ). (44)

Note that we have restored to a dimensional form of the velocity in equation (44), according
to the prescription given in the footnote5.

Observe the role played by the geometry here. The local shape of the vortex enters through
the intrinsic geometric characteristic, the metric g (i.e. the first fundamental form, equation
(19)), as well as through the extrinsic geometric characteristic Ndd ′∂a∂a′Rd ′ (i.e. the second

4 The term A� is defined to be the area of the (� − 1)-dimensional surface of a �-dimensional hyper-sphere of unit
radius, namely A� = 2�(1/2)�/�(�/2), where �(z) is the standard gamma function [18]. Aspects of the geometry
of hyper-spheres are discussed in [17].
5 To restore the physical units, we multiply velocities by h̄/M , energies by ρh̄2/M2, momenta by ρh̄/M and frequencies
by h̄/M .
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fundamental form [16]). For the familiar case of D = 3 (see figure 4), one choice for the
two vectors N1 and N2 is the normal and the binormal to the vortex curve. Together with the
tangent to the one-dimensional vortex line they form an orthonormal basis (i.e. a Frenet–Serret
frame), which reflects the extrinsic geometry of the vortex line. In contrast with its higher
dimensional extensions, the vortex line does not possess any intrinsic geometry.

4.2. Velocity of circular, spherical and hyper-spherical vortices: exact and asymptotic results

We now examine the velocity of vortices for the illustrative cases of circular, spherical and
hyper-spherical /D-dimensional vortices of radius L, embedded in a D-dimensional space. (The
case of D = 2 will be treated separately.) In such cases, the vortex sub-manifolds can be taken
to have the following form:

R(s) = L(sin s1 sin s2 · · · sin s/D −1 sin s/D ,

sin s1 sin s2 · · · sin s/D −1 cos s/D ,

sin s1 sin s2 · · · cos s/D −1,

. . . (45)

sin s1 cos s2,

cos s1,

0),

with the /D parameters (s1, . . . , s/D ) respectively ranging over intervals of length
(π, 2π, . . . , 2π), and where, for each D, we have chosen the manifold to be centered at
the coordinate origin and oriented so that it is confined to the xD = 0 hyper-plane. For
example, in the case of D = 3, the vortex sub-manifold is then a ring of radius L, lying in the
x1 – x2 plane. As the vortices are circular, spherical or hyper-spherical, rotational invariance
ensures that all points on them move with a common velocity and that this velocity points
along the direction perpendicular to the (D − 1)-dimensional plane in which the vortices are
confined, i.e. the D direction.

Formally, we can write an exact expression for the velocity U(�) of any point � on the
manifold, by substituting R(s) into equation (40). Thus, we may choose any point on the
manifold at which to compute the velocity, and for convenience we choose the point given
by s1 = 0 (i.e. R = (0, . . . , 0, L, 0)). Two convenient vectors orthogonal to each other and
normal to the vortex sub-manifold are

N1 = (0, 0, . . . , 0, 0, 1) and N2 = (0, 0, . . . , 0, 1, 0). (46)

By substituting R,N1 and N2 into equation (44), we obtain

UD(�) = 1

2L

h̄

M
ln (L/ξ) , (47)

regardless of the dimension D (provided that D > 2).
In arriving at equation (47), it was our assumption that the vortex is a manifold. Thus,

any point on the vortex has other points on the vortex in its neighbourhood; this is the origin
of the logarithmic dependence on ξ . This feature does not hold for D = 2 because in this case
the vortex is a pair of disconnected points and not a manifold, and hence equation (47) does
not apply. Instead, the velocity conferred on a vortex by its anti-vortex partner separated from
it by a distance 2L is given by the well-known formula 1/2L and points orthogonally to the
line connecting the partners.

13
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H

Figure 6. A weak distortion of a hyper-planar vortex in a four-dimensional superfluid. The height
function H characterizes the distortion, which is perpendicular to the undistorted plane.

4.3. Motion of weak distortions of linear, planar and hyper-planar vortices

Next, we assume that the manifold is a weak distortion of a /D-dimensional hyper-plane
and examine the motion of this distortion that results from it being transported by the flow.
Such hyper-planar vortices are the generalization to the D-dimensional setting of the one-
dimensional straight-line vortex in the three-dimensional setting—first studied for normal
fluids by Thomson in 1880 [19]—and the flat plane vortex in the four-dimensional setting.
The points on the undistorted hyper-plane are given by

x = F(s), (48)

where F(s) = ∑/D

a=1saea , the set {ed}Dd=1 is a complete orthonormal Euclidian basis in the
ambient space and the variables s range without bound. To obtain a weak distortion of the flat
manifold, we augment F(s) with a ‘height’ function,

H(s) = HD−1(s)eD−1 + HD(s)eD, (49)

which has nonzero components HD−1 and HD only, i.e. it points in the two directions transverse
to the flat manifold. Figure 6 illustrates the weak distortion of a plane in D = 4. Thus, the
points on the weak distortion of the flat manifold are given by

x = F(s) + H(s). (50)

We now analyze the dynamics of the small perturbations (i.e. ripples) that propagate on the
manifold, by constructing an equation of motion for them. The first ingredient is the velocity
U of any point σ on the manifold, which we determine by applying equation (40), subject to
the replacement

R(s) → F(s) + H(s). (51)

Thus, we arrive at the flow velocity at the point x = R(σ):

UdD
(σ ) = 2π/D

�(/D/2)

4πD/2
εd1···dD

∫
d/Dsεa1···a/D

∂a1

(
Fd1(s) + Hd1(s)

) · · · ∂a/D

(
Fd/D

(s) + Hd/D
(s)

)
× (F (σ ) − F(s) + H(σ) − H(s))dD−1

|F(σ) − F(s) + H(σ) − H(s)|D . (52)
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We are concerned with small distortions, and we thus expand the right-hand side of equation
(52) to first order in height H ; the details of this expansion are given in appendix F. For all
points σ of the manifold, the resulting velocity U(σ) points in a direction transverse to the
flat manifold, its only nonzero components being approximately given by

Uγ ′(σ )≈ 2π/D
�(/D/2)

4πD/2
εγ γ ′

∫
d/Ds

|F(σ)−F(s)|D
{
(H(σ)− H(s))γ −

/D∑
ν=1

(σ −s)ν
∂Hγ (s)

∂sν

}
, (53)

where the indices γ and γ ′ (which, are summed over when repeated) take only the values
(D − 1) and D, respectively, and εγ γ ′ is the skew-symmetric tensor with εD−1,D := +1

We pause to note that the superflow velocity field V (x) is translationally covariant, in
the sense that a global shift in the position of the vortex sub-manifold by a constant vector
C (i.e. R → R + C) produces the shift of the superflow velocity field V (x) → V (x − C).
Both the vortex velocity given by equation (52) and its approximation equation (53) transform
in accordance with this requirement. In particular, it should be noted that equation (53) is
invariant under translations of the distortion of the form Hγ (σ) = Hγ (σ) + Cγ .

Returning to the calculation of the vortex velocity for the case of weak distortions from
hyper-planarity, the form of the denominator in the integral in equation (53) suggests that
the dominant contribution to Uγ ′(�) comes from short distances, i.e. s ≈ σ . We therefore
approximate this integral by making a Taylor expansion of the term H(σ) about σ = s to
second order, thus arriving at the approximate vortex velocity:

Uγ ′(σ ) ≈ 2π/D
�(/D/2)

4πD/2
εγ γ ′

∫
d/Ds( ∑

ν ′(s − σ)2
ν ′
)D/2 (σ − s)ν(σ − s)ν̄

1

2

∂2Hγ

∂sν∂sν̄

. (54)

To obtain a closed system of equations for the dynamics of the height function, we observe
that the superflow carries the vortex sub-manifold with it, so that the evolution in time t of the
height is given by

∂Hγ (σ, t)/∂t = Uγ (σ, t). (55)

In the approximation (54), this equation of motion becomes a first-order differential (in time),
nonlocal (in an ‘internal space’, i.e. in the coordinates σ that span the undistorted, hyper-planar
vortex sub-manifold) system of two coupled linear equations that is translationally invariant in
both (internal) space and time. As such, it is reducible to a two-by-two matrix algebraic form
under Fourier transformation in both (internal) space and time, which we define as follows:

L̂(q, ω) =
∫

d/Dσ e−iq·σ
∫

dt eiωtL(σ, t), (56)

L(σ, t) =
∫

d/Dq

(2π)/D
eiq·σ

∫
dω

2π
e−iωt L̂(q, ω). (57)

Computing the spatial Fourier transform of equation (55) is addressed in appendix G; the
temporal Fourier transform is elementary. Introducing, for convenience, the coefficient

�(|k|) := π/D/2

�(/D/2)
k2 ln (1/|k|ξ) , (58)

arrived at via the spatial Fourier transform (see appendix G), the equation of motion becomes

− iωĤγ (q, ω) = �(|q|)εγ γ ′Ĥγ ′(q, ω). (59)

The solvability condition for this system is

det

(
iω �(|q|)

−�(|q|) iω

)
= 0, (60)
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and gives rise to the following dispersion relation for the spectrum of normal modes of
oscillation, with two modes for each value of the /D -vector q conjugate to the position in the
flat vortex sub-manifold hyper-plane:

ω(|q|) = ±A/D

h̄

2M
|q|2 ln (1/|q|ξ) , (61)

where we have restored the dimensional factors and used the definition of A/D given in
footnote 4. The normal modes are themselves given by(

Ĥ±
D−1

Ĥ±
D

)
≈

(
1
∓i

)
ei(qσ∓ωt), (62)

and these correspond to left and right circularly polarized oscillations.

5. Superflow kinetic energy for given vortical content

5.1. Exact evaluation

We now use the solution for the velocity field, equation (37), together with the equation for
the kinetic energy E of the velocity field, equation (23), to obtain the kinetic energy in terms
of the source J :

E = 1

2

∫
�

dDxVd(x)Vd(x) = 1

2

∫
�

dDxV ∗
d (x)Vd (x)

= 1

2
δd ′

DdD

(
2π

/D!

)2 ∫
�

dDxεd ′
1···d ′

D

∫
d̂Dq ′q ′

d ′
D−1

e−iq ′ ·x
J ∗

d ′
1···d ′

/D
(q ′)

q ′ · q ′

× εd1···dD

∫
d̂DqqdD−1 eiq·x Jd1···d/D

(q)

q · q

= 1

2
δd ′

DdD

(
2π

/D!

)2

εd ′
1···d ′

D

∫
d̂Dq ′q ′

d ′
D−1

J ∗
d ′

1···d ′
/D
(q ′)

q ′ · q ′

× εd1···dD

∫
d̂DqqdD−1

Jd1···d/D
(q)

q · q
δ̂(D)(q ′ − q)

= 1

2
δd ′

DdD

(
2π

/D!

)2

εd ′
1···d ′

D
εd1···dD

×
∫

d̂DqJ ∗
d ′

1···d ′
/D
(q)Jd1···d/D

(q)
qd ′

D−1
qdD−1

(q · q)2
, (63)

where δ̂(D)(q) := (2π)Dδ(D)(q). For a source J given by a single vortex, as in equation (11),
we then have a more explicit form for the energy:

E = δd ′
DdD

2

(
2π

/D!

)2

εd ′
1···d ′

D
εd1···dD

∫
d/Ds ′εa′

1···a′
/D

(
∂a′

1
Rd ′

1
(s ′)

) · · · (∂a′
/D
Rd ′

/D
(s ′)

)
×

∫
d/Dsεa1···a/D

(
∂a1Rd1(s)

) · · · (∂a/D
Rd/D

(s)
)

×
∫

d̂Dq eiq·(R(s ′)−R(s))
qd ′

D−1
qdD−1

(q · q)2
. (64)

Writing X for
(
R(s ′) − R(s)

)
and using the result for the q integration given in appendix C,

the energy becomes
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E = 1

2

(
2π

/D!

)2

εd ′
1···d ′

D
εd1···dD

δd ′
DdD

∫
d/Ds ′εa′

1···a′
/D

(
∂a′

1
Rd ′

1
(s ′)

) · · · (∂a′
/D
Rd ′

/D
(s ′)

)
×

∫
d/Dsεa1···a/D

(
∂a1Rd1(s)

) · · · (∂a/D
Rd/D

(s)
)

× 1

(X · X)/D/2

(
δd ′

D−1dD−1P1 +
Xd ′

D−1
XdD−1

X · X
P2

)
, (65)

where P1 and P2 depend only on D and are given in appendix C.
The final step in constructing the energy of a single vortex involves contracting the D-

dimensional ε symbols and taking advantage of the skew-symmetry of the sources. Thus, we
arrive at the result

E = 1

2

(
2π

/D!

)2 1

(2π)D
AD−1

√
π�

(
D

2
− 1

2

)
2/D −2�

(
D

2
− 1

)
×

∫
d/Ds ′εa′

1···a′
/D

(
∂a′

1
Rd1(s

′)
) · · · (∂a′

/D −1
Rd/D −1(s

′)
)(

∂a′
/D
Rd ′

/D
(s ′)

)
×

∫
d/Dsεa1···a/D

(
∂a1Rd1(s)

) · · · (∂a/D −1Rd/D −1(s)
)(

∂a/D
Rd/D

(s)
)

× 1

(X · X)/D/2

{
(4 − D)/D!δd ′

/D d/D
+ /D 2/D!

Xd ′
/D
Xd/D

X · X

}
. (66)

The factor AD−1 is the surface area of a (D − 1)-dimensional hyper-sphere of unit radius (see
footnote 4) and �(z) is the standard gamma function (see, e.g., [18]).

Formula (66) gives the kinetic energy in terms of the local geometry of ‘patches’ of the
vortex sub-manifold and interactions between such ‘patches’. The asymptotically dominant
contributions to the energy come from nearby patches, and we evaluate these contributions
in the following section. The linearity of the theory ensures that the energy associated with
configurations involving multiple, rather than just one, vortices is obtained via an elementary
extension, comprising self-interactions terms, such as the one just given, for each vortex, as
well as mutual interaction terms for pairs of distinct vortices.

5.2. Asymptotics and geometry

We now analyze the energy of a vortex asymptotically, subject to the conditions discussed
earlier in section 4.1 (i.e. the characteristic linear dimensions and radii of curvature of the vortex
are much larger than the short-distance cutoff ξ ). In this regime, the dominant contribution
to the energy is associated with the large values of the integrand that occur when the (/D -
dimensional) integration variables s and s ′ are nearly coincident, so that the denominator
(X · X)/D/2 is small. To collect such contributions, it is useful to change variables from (s, s ′)
to (�, σ ) as follows:

sa := �a, (67)

s ′
a := �a + σa, (68)

the Jacobian for this transformation being unity:

∂(s, s ′)
∂(�, σ)

=
[

det

(
1 1
0 1

)]/D

= 1, (69)

so that
∫

d/Ds ′ ∫ d/Ds . . . = ∫
d/D�

∫
d/Dσ . . . .

17



J. Phys. A: Math. Theor. 42 (2009) 185001 P M Goldbart and F Bora

The energy formula (66) comprises two pieces, and we now consider them in turn. The
first, (a), involves the integral∫

d/D�

∫
d/Dσ

(X · X)/D/2 εa′
1···a′

/D

(
∂a′

1
Rd1(� − s)

) · · · (∂a′
/D
Rd/D

(� − s)
)

× εa1···a/D

(
∂a1Rd1(s)

) · · · (∂a/D
Rd/D

(s)
)
. (70)

The second, (b), involves the integral∫
d/D�

∫
d/Dσ

Xd ′
/D
Xd/D

(X · X)D/2 εa′
1···a′

/D

(
∂a′

1
Rd1(� − s)

) · · · (∂a′
/D −1

Rd/D −1(� − s)
)(

∂a′
/D
Rd ′

/D
(� − s)

)
× εa1···a/D

(
∂a1Rd1(s)

) · · · (∂a/D −1Rd/D −1(s)
)(

∂a/D
Rd/D

(s)
)
. (71)

Our strategy will be to Taylor expand the integrands in terms (a) and (b) about the point σ = 0,
keeping only the leading-order terms.

Let us focus on term (a). It is adequate to approximate the numerator at zeroth order:

εa′
1···a′

/D

(
∂a′

1
Rd1(�)

)· · ·(∂a′
/D
Rd/D

(�)
)
εa1···a/D

(
∂a1Rd1(�)

)· · ·(∂a/D
Rd/D

(�)
)
.

Note the occurrence of /D factors of the induced metric gaa′ , defined in equation (19). In terms
of g, the numerator of term (a) becomes

εa′
1···a′

/D
εa1···a/D

ga′
1a1(�)ga′

2a2(�) · · · ga′
/D a/D

(�), (72)

and, by the well-known formula for determinants, this is

/D! det g. (73)

To complete the approximate computation of term (a), we examine the denominator

(X · X)−/D/2 = |R(� + σ) − R(�)|−/D . (74)

By Taylor expanding for small σ and retaining only the leading-order contribution, we find
that the denominator becomes

(σa′ga′aσa)
−/D/2 . (75)

Thus, for term (a) we have the approximate result∫
d/D�

∫
d/Dσ

/D!det g(�)

(σa′ga′a(�)σa)
/D/2 . (76)

A convenient way to analyze the integration over σ is to make a /D-dimensional orthogonal
transformation from σ to coordinates ζ that diagonalize g, the eigenvalues of which we denote
by {γa}/Da=1, and then to ‘squash’ these coordinates to ζ̂ (defined via ζ̂a := √

γaζa), so as to
‘isotropize’ the quadratic form in the denominator. Following these steps, postponing to the
following paragraph a discussion of the integration limits and omitting an overall factor of /D!,
our approximation for term (a) becomes∫

d/D�det g(�)

∫
d/Dσ

(σa′ga′a(�)σa)
/D/2 =

∫
d/D�det g(�)

∫
d/D ζ[∑/D

a=1 γa(�)ζ 2
a

]/D/2

=
∫

d/D�
det g(�)∏/D

a=1

√
γa(�)

∫
d/D ζ̂[ ∑/D

a=1 ζ̂ 2
a

]/D/2

=
∫

d/D�
√

det g(�)A/D

∫
dZZ/D −1

Z/D
,

where Z :=
√∑/D

a=1 ζ̂ 2
a .
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Up to now, we have been vague about the limits on the integrations over the σ variables.
In the short-distance regime there is, for each value of �, a physically motivated cutoff that
eliminates contributions from regions of σ in which the separation |R(� + σ) − R(�)| is of
order ξ or smaller. This cutoff is associated with the fact that our overall description is not
intended (and is indeed unable) to capture physics on lengthscales associated with the linear
dimension ξ of the core of the vortices. In the long-distance regime, there are integration
limits associated with the finite size of the vortex, which we take to be of order L. (Thus, we
rule out of consideration vortices whose shape is strongly anisotropic; already ruled out are,
e.g., rough vortices, for which the Taylor expansion of the functions describing the shapes of
the vortices would be unjustified.) In particular, the last step in our approximate computation
of term (a), in which we transformed to the single radial coordinate in the /D-dimensional
flat plane tangent to the vortex at the point s = �, is only valid if the limits of integration
possess the rotational symmetry of this tangent plane, which they typically do not. (The case
of D = 3 is an exception.) However, to within the logarithmic accuracy to which we are
working, it is adequate to ignore these complications and approximate what has become the
Z integral by ln(L/ξ). Any refinement would just change the argument of the logarithm by
a multiplicative numerical factor, and this would produce an additive correction to our result
that is of sub-leading order. Thus, our approximation to term (a) becomes

/D!
∫

d/D�
√

det g(�)A/D ln(L/ξ). (77)

The remaining integral,
∫

d/D�
√

det g(�), is familiar from differential geometry, and simply
gives the /D-dimensional volume of the sub-manifold supporting the vortex, which we shall
denote by W/D (and which is a functional of R(·)). Thus, our approximation to term (a)
becomes

/D!A/D W/D ln(L/ξ). (78)

A similar procedure allows us to find an adequate approximation to term (b), as we now
show. In contrast with term (a), owing to the two factors of Xd := Rd(� + σ) − Rd(�), the
numerator vanishes at zeroth order in σ and requires Taylor expansion,

Xd ≈ σa∂Rd/∂�a, (79)

to identify the leading-order contribution to the numerator. The remaining factors in the
numerator can be evaluated at zeroth order, which then become

εa′
1···a′

/D
∂a′

1
Rd1 · · · ∂a′

/D −1
Rd/D −1∂a′

/D
Rd ′

/D
εa1···a/D

∂a1Rd1 · · · ∂a/D −1Rd/D −1∂a/D
Rd/D

× σa′
D−1

∂a′
D−1

Rd ′
/D
σaD−1∂aD−1Rd/D

= εa1···a/D
εa′

1···a′
/D
ga′

1a1 · · · ga′
D−3aD−3ga′

/D a′
D−1

σa′
D−1

ga/D aD−1σaD−1

= εa1···a/D −1a/D
εa1···a/D −1a

′
D−1

σa′
D−1

ga/D aD−1σaD−1

= (/D − 1)!δa/D a′
D−1

σa′
D−1

ga/D aD−1σaD−1 = /D!σa′ga′aσa, (80)

in which all terms involving R and g are evaluated at the point �, and where we have made
use of the formula for the determinant,

εa′
1···a′

/D
ga′

1a1ga′
2a2 · · · ga′

/D a/D
= εa1···a/D

det g, (81)

and, once again, introduced the induced metric ga′a(�) as well as a contraction
εa1···a/D −1aεa1···a/D −1a′ = (/D − 1)! δaa′ . As for the denominator of term (b), we Taylor expand this
in the manner already used for term (a), noting that the overall powers in these denominators
differ by unity. Thus, apart from an overall factor of (/D − 1)!, we have for term (b) the
approximate result∫

d/D�det g(�)

∫
d/Dσ

σa′ga′a(�)σa

(σa′ga′a(�)σa)
D/2 =

∫
d/D�det g(�)

∫
d/Dσ

(σa′ga′a(�)σa)
/D/2 , (82)
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which is of precisely the structure that arose in the analysis of term (a), and thus the approximate
result for term (b) becomes

(/D − 1)!A/D W/D ln(L/ξ). (83)

Finally, we assemble terms (a) and (b) to arrive at an asymptotic formula for the energy
of the equilibrium flow in the presence of a vortical defect, which reads as

E ≈ π2−D

4

√
π�

(
D

2
− 1

2

)
�

(
D

2
− 1

)
AD−1A/D ln(L/ξ)W/D . (84)

This formula simplifies, using the equation for A� (see footnote 4) to give

E ≈
(

ρ
h̄2

M2

)
πW/D ln(L/ξ), (85)

where we have restored the dimensional factors.

5.3. Elementary argument for the energy

In subsection 5.2, we have shown that, in the asymptotic limit of a large, smooth, /D-dimensional
vortex sub-manifold having the topology of the surface of a (D−1)-dimensional hyper-sphere,
the kinetic energy depends on the geometry of the sub-manifold only through its /D-dimensional
volume W/D . This result is consistent with the following elementary argument.

Imagine starting with such a vortex sub-manifold and ‘morphing’ its shape into that of
a hyper-sphere having the same /D-dimensional volume. Next, cut the hyper-sphere along an
equator, so that it becomes two hyper-hemispheres of an equal size. Then, distort the hyper-
hemispheres into flat hyper-planes separated by αL (i.e. a distance of order L), maintaining
their /D-dimensional volumes at 1

2W/D and imposing periodic boundary conditions on opposing
sides of the hyper-planes. This last step is bound to involve some stretching of the sub-
manifolds, but let us assume that this will only affect the energy sub-dominantly. We choose
the separation of the hyper-planes to be O(L), so as to best maintain the geometry of the
original sub-manifold. We can think of the resulting D-dimensional system as comprising a
/D-dimensional stack of identical, two-dimensional, films of a superfluid having thicknesses ξ

in every one of their /D thin dimensions, each film containing a point-like vortex–anti-vortex
pair.

Now, owing to the translational and inversion symmetry of the stack, the flow in each film
is confined to the film and is simply that associated with vortices in the film, and therefore the
energy of the flow is given by the formula 2πξ/D ln(αL/ξ) (see, e.g., [2]). Furthermore, the
number of films is 1

2W/D /ξ/D . Thus, consistent with equation (85), the total energy is given by

W/D

2ξ/D
× 2πξ/D ln

(
αL

ξ

)
= πW/D

{
ln

L

ξ
+ O(1)

}
, (86)

where the O(1) correction is associated with the factor α.
Sub-leading corrections to this result for the energy will not depend solely on the vortex

sub-manifold volume but also on its more refined local and global geometrical characteristics.

5.4. Energy of circular, spherical and hyper-spherical vortices: exact and asymptotic results

In this section, we analyze the energy of a geometrically (and not just topologically) hyper-
spherical vortex sub-manifold. The function R(s) for such a vortex is given by equation
(45), and by substituting this form into equation (65) we obtain a formally exact result for the
energy.

20



J. Phys. A: Math. Theor. 42 (2009) 185001 P M Goldbart and F Bora

To illustrate this point, consider the case of a two-dimensional vortex in D = 4, for which
the energy reads as

E = 1

8
L2

∫ π

−π

ds1 ds ′
1

∫ π/2

−π/2
ds2 ds ′

2 cos(s2) cos(s ′
2)

×
{

2

1 − cos(s1 − s ′
1) cos s2 cos s ′

2 − sin s2 sin s ′
2

− 1

}
. (87)

As with the case of arbitrary D, the integrand in equation (87) is singular for (s1, s2) = (s ′
1, s

′
2);

therefore, we follow the procedure, described in detail in section 5.2, of expanding the integrand
around this point of singularity, hence obtaining the asymptotic result that the energy is given
by

E ≈ 4π2L2 ln(L/ξ). (88)

Turning now to arbitrary dimension D, the energy of a hyper-spherical vortex can be
obtained by replacing the volume of the manifold in equation (85) by the surface area of a
(D − 1)-dimensional hyper-sphere, namely AD−1L

/D (see footnote 4), so that we arrive at

E ≈ πAD−1L
/D ln(L/ξ). (89)

5.5. Energy–momentum relation for vortices

We now use the results for the energies and velocities of circular, spherical and hyper-spherical
vortices (i.e. D � 3), obtained respectively in sections 4.2 and 5.4, to construct the momentum
P of such vortices and, hence, their energy–momentum relations. To do this, we observe that
the energy E(L) and velocity V (L) depend parametrically on the radius of the vortex L. Hence,
we may construct the parametric dependence of the momentum P(L) via the Hamiltonian
equation

V (L) = ∂

∂p
E(p)

∣∣∣∣∣
p=P(L)

= ∂E/∂L

∂P/∂L
, (90)

in view of which we have
∂P

∂L
= ∂E/∂L

V (L)
≈ 2π /D AD−1L

/D , (91)

where we have retained only the leading behavior at large L. By integrating with respect to L,
we obtain the parametric dependence of the momentum on the vortex radius,

P(L) ≈ 2π
D − 2

D − 1
AD−1L

D−1, (92)

and by eliminating L in favor of E we arrive at the energy–momentum relation

E ≈ η(D)P
D−2
D−1

(
ln

Pξ

h̄
+ ln

M

ρξD

)
, (93)

where η(D) is a D-dependent constant given by

η(D) = (πAD−1)
1/(D−1)

D − 1

(
D − 1

2D − 4

)D−2
D−1

, (94)

and the sub-leading logarithmic term is sensitive to the number of particles per coherence
volume.

For the case of D = 2, the foregoing derivation of the dispersion relation does not hold
because (i) the computation of ∂E/∂L misses the leading term, which is a logarithm in L (see
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equation (85)), and (ii) the formula used for V (L) does not hold in D = 2, as noted at the end
of section 4.2. Nevertheless, if we substitute the correct forms for ∂E/∂L and V (L), namely
2π/L and 1/2L respectively, into equation (90), we obtain a dispersion relation identical to
the D → 2 limit of that given in equation (93), up to a numerical factor in the argument of the
logarithm. It is amusing to note that even the amplitude η(D) has the correct value, 2π , in the
limit D → +2.

6. Scaling and dimensional analysis

To ease the presentation, we have chosen to drop factors of h̄,M and ρ from our derivations,
restoring physical units only when giving results at the ends of the various sections. It is
worth noting, however, that many of our results can be obtained via scaling and dimensional
analysis, up to overall dimension-dependent factors and cutoff-dependent logarithms, as we
now discuss.

There are two characteristic lengthscales: the linear dimension of a vortex L and the vortex
core size ξ . The latter serves as a cutoff and therefore only features in logarithmic factors,
which are inaccessible to our scaling and dimensional analysis. There are two characteristic
mass-scales: the mass of each of the condensing particles M, and ρLD , where ρ is the mass
density of the superfluid. Lastly, there is a characteristic frequency scale: h̄/ML2.

To ascertain the scaling form of the velocity of a vortex, we note that its derivation
involves only the generalized D-dimensional Ampère–Maxwell law, and is thus insensitive to
ρ. Hence, dimensional analysis suggests that

V ∼ L × h̄

ML2
∼ h̄

ML
, (95)

which agrees, e.g., with equation (47), except for numerical and logarithmic factors. As for
the energy of a flow associated with a vortex, it is proportional to the density ρ, and therefore
dimensional analysis suggests that

E ∼ ρLD × L2 ×
(

h̄

ML2

)2

∼ ρL/D h̄2

M2
, (96)

which agrees, e.g., with equation (85), except for numerical and logarithmic factors. Regarding
the momentum, it was computed from the Hamiltonian equation of motion (90) and, thus, like
the energy, scales as ρ1. Dimensional analysis therefore suggests that

P ∼ ρLD × L × h̄

ML2
∼ ρLD−1 h̄

M
, (97)

which agrees, e.g., with equation (92), except for numerical and logarithmic factors.
Concerning the frequency of oscillations of distortions of wavevector q of a hyper-planar
vortex (see equation (61)), these are driven by the flow velocity and therefore do not depend
on ρ. Moreover, the undistorted vortex does not have a system-size-independent characteristic
size; instead, the characteristic lengthscale is set by q−1. These scaling notions, together with
dimensional analysis, suggest that

ω ∼ h̄

M
q2, (98)

consistent with equation (61), except for numerical and logarithmic factors.
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7. Concluding remarks

We have explored the extension, to arbitrary spatial dimension, of Onsager–Feynman quantized
vortices in the flow of a superfluid, focusing on the structure and energetics of the associated
superflow and the corresponding dynamics of the vortices. To do this, we have analyzed the
superflow that surrounds the vortices at equilibrium by invoking an extension, to arbitrary
dimensions, of the three-dimensional analogy between (i) the magnetic field of Ampère–
Maxwell magnetostatics in the presence of specified, conserved electric currents concentrated
on infinitesimally thin loops and (ii) the velocity field of equilibrium superfluidity of helium-
4 in the presence of specified, conserved vorticity concentrated on infinitesimally thin
vortices.

By constructing the appropriate conditions that the velocity field must obey at equilibrium,
if the flow is to have a given vortical content, we have determined the corresponding flow
in terms of this vortical content, via the introduction of a suitable, skew-symmetric gauge
potential of rank 2 fewer than the spatial dimension. The structure of the flows associated with
generically shaped vortices has enabled us to develop results for the dynamics that vortices
inherit from these flows in all dimensions, and for the way in which this dynamics reflects both
the intrinsic and extrinsic geometry of the vortices when the vortices are large and smooth,
relative to the vortex core size. This structure has also allowed us to ascertain the velocities
with which the higher dimensional extensions of circular vortex rings (i.e. vortex spheres and
hyper-spheres) propagate as well as to analyze the higher dimensional extension (to planes
and hyper-planes) of the Kelvin problem of the vibrations of a line vortex.

For all dimensions, we have expressed the equilibrium kinetic energy of a superflow in the
presence of a generic vortex in terms of the shape of the vortex and have identified the leading
contribution to this energy—for vortices that are smooth and large, relative to the vortex
core size—as being proportional to the volume of the sub-manifold supporting the vortex.
We have also computed the kinetic energy for the higher dimensional extensions of vortex
rings and used these energies to determine the momenta, and energy–momentum relations,
of these maximally symmetrical vortices. In addition, we have shown how the structure of
our results, if not their details, can be obtained via elementary arguments, including scaling
analyses.

The geometry of the vortices—both the intrinsic geometry of their shapes and the extrinsic
geometry of the manner in which the vortices are embedded in the high-dimension ambient
space—plays a central role in our developments. The natural language for such developments is
that of exterior calculus and differential forms, but we have not made this language essential,
using instead the equivalent, but more widely known, language of skew-symmetric tensor
fields.

Further issues that one might consider within the present framework include lattices of
higher dimensional extensions of vortices associated with equilibrium states of a rotating
superfluid, along with the collective vibrations of such lattices (i.e. Tkachenko modes), as well
as Magnus-type forces on vortices provided by background flows. One might also consider
the energetics and motion of knotted vortices in three dimensions (cf Kelvin’s ‘vortex atoms’
[20]) and—where mathematically available—topologically more exotic, higher dimensional
vortices, including higher genus surfaces. Moreover, one might apply the energetics of higher
dimensional extensions of vortices, and the interactions between them, to a re-examination
of the statistical mechanics of the superfluid-to-normal phase transition (i.e. the ‘lambda’
transition) in higher dimensions. Still more challenging would be the generalization of the
circle of ideas discussed in this paper to the nonlinear setting provided by non-Abelian gauge
fields.
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s

R(s)
M

M

Figure A1. A closed path ∂M around a segment of a vortex loop specified by R(s), with arc-length
parameter s. ∂M is the boundary of the two-dimensional region M, which is punctured by the
/D-dimensional vortex.
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Appendix A. Source terms and quantized circulation

In this appendix, we discuss two properties of the source field J . First, we show that the
circulation, equation (2), of the superflow around the vortex sub-manifold associated with the
source term given in equation (11) is quantized to a unit value. We then show that the source
field is divergenceless.

We begin by considering a closed, one-dimensional path ∂M, centered on the vortex
sub-manifold and encircling it, along with the associated two-dimensional region M bounded
by ∂M and is punctured by the vortex sub-manifold, as shown in figure A1. In the language of
differential forms, the Stokes theorem, applied to equation (9), determines that the circulation
κ around ∂M is given by

κ =
∮

∂M
Vd(x) dxd =

∮
∂M

V (A.1)

=
∫
M

dV = 2π

∫
M

� J = 2π

2!

∫
M

(� J )d1d2(x) dxd1 ∧ dxd2 . (A.2)

We take ∂M to be circular, with the points on it being given by

x = R(s0) + a1N
1 + a2N

2, (A.3)

where a1 and a2 vary subject to the constraint a2
1 +a2

2 = const > 0 and N1 and N2 are any pair
of mutually perpendicular unit vectors that are perpendicular to the vortex sub-manifold at the
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point s0. An elementary computation then shows that dxd1 ∧ dxd2 = da1 ∧ da2(N
1 ∧ N2)d1d2 ,

so that, from equation (A.2), the circulation becomes

κ = 2π

2!

∫
M

(� J )d1d2(x)(N1 ∧ N2)d1d2 da1 ∧ da2. (A.4)

Next, we insert the explicit components � Jd1d2 , equation (13), for the specific form of M
defined by equation (A.3), to arrive at

κ = 2π

2!

∫
M

∫
d/Dsεd1···d/D dD−1dD

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
(N1 ∧ N2)dD−1dD

× δ(D)(R(s0) + a1N
1 + a2N

2 − R(s)) da1 ∧ da2. (A.5)

Next, we Taylor expand R(s) in the argument of the delta function about the point s = s0 and
use the orthogonality of N1 and N2 with the tangent vectors {∂R/∂sa}/Da=1 at s0 to obtain

κ = 2π

2!
εd1···d/D dD−1dD

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
(N1 ∧ N2)dD−1dD

∣∣∣
s=s0

×
∫

d/Dsδ(D−2)((s − s0)a∂aR(s)|s=s0)

∫
δ(1)(a1) da1

∫
δ(1)(a2) da2. (A.6)

The last two integrals each give a factor of unity. The remaining one, over s, is readily seen
to give a factor of 1/| det(∂aR)| provided we invoke the fact that the term ∂aR is a square
/D × /D matrix in the subspace of vectors tangent to the vortex sub-manifold. As we discuss in
section 2.2, the factor εd1···d/D dD−1dD

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
is given by (N1 ∧ N2)dD−1dD

det(∂aR).
Hence, in the formula for the circulation the determinants cancel and the remaining two factors
of the form N1 ∧ N2 contract with one another to give a factor of 2, so that we arrive at the
result

κ = ±1, (A.7)

the sign depending on the sense in which the encircling path ∂M is followed. Thus, we see
that the circulation of the superflow around the vortex sub-manifold associated with the source
term given in equation (11) is indeed quantized to a unit value.

In order to discuss the divergencelessness property of J , we should distinguish between
two cases. In the case of D = 3 the source field is a vector, which consequently has no
skew-symmetric properties. In arbitrary dimension D greater than or equal to 4, the source
field J has a tensorial structure that we exploit in our analysis. Let us first consider the case
of D = 3. The source term is then given by

Jd1(x) =
∫

ds
dRd1(s)

ds

∫
d3q

(2π)3
e−iq·(x−R(s)), (A.8)

and its divergence may be manipulated as follows:

∇d1Jd1(x) =
∫

ds
dRd1(s)

ds

∫
d3q

(2π)3

( − iqd1

)
e−iq·(x−R(s))

=
∫

ds

∫
d3q

(2π)3

( − iqd1

)dRd1(s)

ds
e−iq·(x−R(s))

=
∫

d3q

(2π)3

∫
ds

d

ds
(e−iq·(x−R(s))). (A.9)

The integrand in the last line of equation (A.9) is a total derivative of a periodic function of s,
and therefore the integral vanishes.

For D � 4, the source term has the structure

Jd1···d/D
(x) =

∫
d/Dsεa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)∫ dDq

(2π)D
e−iq·(x−R(s)), (A.10)

and its divergence may be manipulated as follows:
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∇d1Jd1···d/D
(x) =

∫
d/Dsεa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

) ∫
dDq

(2π)D

( − iqd1

)
e−iq·(x−R(s))

=
∫

d/Ds

∫
dDq

(2π)D
εa1···a/D

[
∂a1

(
e−iq·(x−R(s))

)]
(∂a2Rd2) · · · (∂a/D

Rd/D

)
=

∫
dDq

(2π)D

∫
d/Ds

{
εa1···a/D

∂a1

[
e−iq·(x−R(s))(∂a2Rd2) · · · (∂a/D

Rd/D

)]
− e−iq·(x−R(s))εa1···a/D

∂a1

[
(∂a2Rd2) · · · (∂a/D

Rd/D

)]}
. (A.11)

In the last line of equation (A.11) the first term vanishes because the integrand is a total
derivative of a periodic function, whilst the second term vanishes via the skew-symmetric
properties of the Levi-Civita symbol. Hence, we have the divergencelessness condition
∇d1Jd1···d/D

= 0.

Appendix B. Computing the velocity field

As shown in section 3.2, the velocity field due to a single, /D-dimensional vortex is given by

VdD
(x) = −2π

/D!
εd1···dD

∫
d̂Dq

iqdD−1

q · q
e−iq·x

∫
d/Dsεa1···aD−2

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
eiq·R(s). (B.1)

Performing the q integration using equation (C.2) of appendix C, and noting the formula for
the surface area of a D-dimensional sphere of unit radius (see footnote 4), the velocity field
becomes

VdD
(x) = −2π

/D!
εd1···dD

∫
d/Dsεa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

) ∫
d̂Dq

iqdD−1

q · q
eiq·(R(s)−x)

= 2π

/D!
εd1···dD

∫
d/Dsεa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
∂dD−1

∫
d̂Dq

eiq·(R(s)−x)

q · q

= π
3
2 −D

/D!4
AD−1�

(
D

2
− 1

2

)
�

(
/D

2

)
εd1···dD

×
∫

d/Dsεa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

) (
∂dD−1 |x − R(s)|−/D

)
= π

3
2 −D

(/D − 1)!4
AD−1�

(
D

2
− 1

2

)
�

(
/D

2

)
εd1···dD

×
∫

d/Dsεa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)(
x − R(s)

)
dD−1

|x − R(s)|D

= 1

2π/D/2

�(/D/2)

(/D − 1)!
εd1···dD

∫
d/Dsεa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)(
x − R(s)

)
dD−1

|x − R(s)|D .

(B.2)

Appendix C. Invariant integrals

Consider the q integral in equation (64). Writing X for
(
R(s ′) − R(s)

)
, and invoking rotational

symmetry and dimensional analysis, we have

(2π)D
∫

d̂Dq eiq·X qd′qd

(q · q)2
= 1

(X · X)/D/2

(
δd ′dP1 +

Xd ′Xd

X · X
P2

)
. (C.1)
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Contracting first with δ and then Xd ′Xd , we arrive at the invariant integrals∫
dDq eiq·X 1

q · q
= DP1 + P2

(X · X)/D/2 , (C.2)

1

(X · X)

∫
dDq eiq·X (q · X)2

(q · q)2
= P1 + P2

(X · X)/D/2 . (C.3)

The integrals (C.2) and (C.2) can be computed in hyper-spherical coordinates, and we thus
obtain for P1 and P2:

P1 = AD−1
√

π�

(
D

2
− 1

2

)
2D−4�

(
D

2
− 1

)
, (C.4)

P2 = (2 − D)AD−1
√

π�

(
D

2
− 1

2

)
2D−4�

(
D

2
− 1

)
, (C.5)

where AD is the surface area of a D-dimensional sphere of unit radius (see footnote 4) and
�(z) is the standard gamma function [18].

Appendix D. Asymptotic analysis for the velocity of a vortex

To determine the asymptotic behavior of the velocity, we start with equation (40), which
contains the factor∫

d/Dsεa1···a/D
∂a1Rd1(s) · · · ∂a/D

Rd/D
(s)

(R(�) − R(s))dD−1

|R(�) − R(s)|D , (D.1)

and Taylor expand the integrand about the point � to obtain∫
d/Ds

{[(
∂a1Rd1

) · · · (∂a/D
Rd/D

)∣∣∣∣
s=�

+
(
∂a1Rd1

) · · · (∂b∂am
Rdm

) · · · (∂a/D
Rd/D

)∣∣∣∣
s=�

(sb − �b) + · · ·
]

×
[
−(

∂bRdD−1

)∣∣∣∣
s=�

(sb − �b) − 1

2

(
∂b∂b′RdD−1

)∣∣∣∣
s=�

(sb − �b)(sb′ − �b) + · · ·
]

×
( [

−(
∂bRd̄

)∣∣∣∣
s=�

(sb − �b) − 1

2
(∂b∂b′Rd̄)

∣∣∣∣
s=�

(sb − �b)(sb′ − �b′) + · · ·
]

×
[
−(

∂bRd̄

)∣∣∣∣
s=�

(sb − �b) − 1

2
(∂b∂b′Rd̄)

∣∣∣∣
s=�

(sb − �b)(sb′ − �b′) + · · ·
])− D

2

.

(D.2)

Next, we expand the terms in the square brackets, retaining only terms to leading order, and
collect terms of a similar structure in the integration variables s, observing that two such
structures arise:

I(2)
a1a2

(�) :=
∫

d/Ds
(sa1 − �a1)(sa2 − �a2)

[(sa − �a)gaa′(�)(sa′ − �a′)]D/2 , (D.3)

I(4)
a1a2a3a4

:=
∫

d/Ds
(sa1 − �a1)(sa2 − �a2)(sa3 − �a3)(sa4 − �a4)

[(sa − �a)gaa′(�)(sa′ − �a′)](D/2)+1
. (D.4)
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The asymptotic behaviors of these structures are given by

I(2)
a1a2

(�) ≈ A/D

/D

ḡa1a2√
det g

ln(L/ξ), (D.5)

I(4)
a1a2a3a4

(�) ≈ A/D

D/D

ḡa1a2 ḡa3a4 + ḡa1a3 ḡa2a4 + ḡa1a4 ḡa2a3√
det g

ln(L/ξ), (D.6)

where ḡ := g−1, and g and ḡ are evaluated at �.

Appendix E. Geometric content of the vortex velocity

Equation (41) for the asymptotic approximation to the vortex velocity UdD
(�) contains three

terms:

J 1
dD

:= εd1···dD
εa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)(
∂b∂b′RdD−1

)
ḡbb′ , (E.1)

J 2
dD

:= εd1···dD
εa1···a/D

(
∂b′RdD−1

)(
∂a1Rd1

) · · · (∂b∂am
Rdm

) · · · (∂a/D
Rd/D

)
ḡbb′ , (E.2)

J 3
dD

:= εd1···dD
εa1···a/D

(
∂bRd̄

)(
∂b̄∂b̄′Rd̄

)(
∂a1Rd1

) · · · (∂a/D
Rd/D

)(
∂b′RdD−1

)
× (

ḡbb̄ḡb′b̄′ + ḡbb̄′ ḡb̄b̄′ + ḡbb′ ḡb̄b̄′
)
, (E.3)

which we consider in turn.
The first term contains the ingredient

εd1···dD
εa1···a/D

(
∂a1Rd1

) · · · (∂a/D
Rd/D

)
, (E.4)

which is identical to the term in equation (14), computed in section 2.2. By substituting its
value into equation (E.1), we obtain

J 1
dD

= /D !
√

detgNdD−1dD

(
∂b∂b′RdD−1

)
ḡbb′ . (E.5)

It is straightforward to observe (via partial integration) that J 2 is identical to J 1, up to a sign.
As for J 3

dD
, it is proportional to

εd1···dD
εa1···a/D

(
∂bRd̄

)(
∂a1Rd1

)· · ·(∂a/D
Rd/D

)(
∂b′RdD−1

)
, (E.6)

a term that is skew-symmetric in the indices (d1, . . . , d/D ) and symmetric under the interchange
of d̄ and di . With the only possible values for both d̄ and di being in the set {1, . . . , /D },J 3

vanishes.

Appendix F. Velocity for a weak distortion of a hyper-planar vortex

In this appendix, we consider weak distortions of a /D-dimensional hyper-planar vortex and
determine the velocity that the corresponding superflow confers on such distortions. We begin
with equation (52), which is equation (40) but with the replacement equation (51), which
yields the velocity U(σ) of points σ on the vortex in terms of H . We then expand U in powers
of H , which we take to be small, and, for the sake of compactness, we temporarily omit an
overall factor of 2π/D �(/D/2)/4πD/2 which multiplies the velocity. Hence, we arrive at the
formula

UdD
(σ ) = εd1···dD

∫
d/Ds∂a1(Fd1(s) + Hd1(s)) · · · ∂a/D

(Fd/D
(s) + Hd/D

(s))

× (F (σ ) − F(s) + H(σ) − H(s))dD−1

|F(σ) − F(s) + H(σ) − H(s)|D (F.1)
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= εd1···dD

∫
d/Ds∂a1Fd1(s) · · · ∂a/D

Fd/D
(s)

(F (σ ) − F(s))dD−1

|F(σ) − F(s)|D

+ εd1···dD

/D∑
ν=1

∫
d/Ds∂a1Fd1(s) · · · ∂aν

Hdν
(s) · · · ∂a/D

Fd/D
(s)

(F (σ ) − F(s))dD−1

|F(σ) − F(s)|D

+ εd1···dD

∫
d/Ds∂a1Fd1(s) · · · ∂a/D

Fd/D
(s)

(H(σ) − H(s))dD−1

|F(σ) − F(s)|D

−Dεd1···dD

∫
d/Ds∂a1Fd1(s) · · · ∂a/D

Fd/D
(s)

× (F (σ ) − F(s)) · (H(σ) − H(s))
(F (σ ) − F(s))dD−1

|F(σ) − F(s)|D+2
+ O(H 2). (F.2)

As F(s) describes a hyper-plane, its derivatives with respect to sa are simply Kronecker deltas:
∂aFd(s) = δad . Furthermore, the term of zeroth order in H on the right-hand side of equation
(F.2), namely

εd1···dD

∫
d/Dsδa1d1 · · · δa/D d/D

(σ − s)aν
δaνdD−1

|F(σ) − F(s)|D = εa1···aD−2aνdD

∫
d/Ds

(σ − s)aν

|F(σ) − F(s)|D ,

vanishes because aν can only take values between a1 and a/D and the term is already skew-
symmetric in these indices. The last term of first order in H on the right-hand side of equation
(F.2) also vanishes via the orthogonality of F and H .

We observe that the remaining terms for the velocity, i.e.

UdD
(σ ) ≈

/D∑
ν,ν ′=1

∫
d/Dsε12···dν ···D−2dD−1dD

∂aν
Hdν

(s)
(σ − s)ν ′δν ′dD−1

|F(σ) − F(s)|D

+
∫

d/Dsε12···D−2dD−1dD

(H(σ) − H(s))dD−1

|F(σ) − F(s)|D , (F.3)

are nonzero only for the components UD−1 and UD . In order to keep the notation compact,
it is useful to introduce a new index, γ , which takes only the values D − 1 and D. As a last
step, we rearrange the indices of the Levi-Civita symbols, arriving at the (D − 1) th and Dth
components of the velocity, to first order in the height:

Uγ ′(σ ) ≈
D∑

γ=D−1

εγ γ ′

∫
d/Ds

|F(σ) − F(s)|D
(

(H(σ) − H(s))γ −
/D∑

ν=1

(∂νHγ (s))(σ − s)ν

)
,

(F.4)

with all other components of U vanishing to this order.

Appendix G. Fourier transform of the velocity for the weak distortion of a hyper-planar

vortex

The required Fourier transform is of the convolution on the right-hand side of equation (54),
and is of the form∫

d/Dσ e−iq·σ
∫

d/Ds
(σ − s)ν(σ − s)ν̄

|σ − �|D
∂2Hγ

∂sν∂sν̄

(G.1)

= (2π)/D
∫

d/Dσ e−iq·(σ−s) (σ − s)ν(σ − s)ν̄

|σ − �|D
∫

d/Ds e−iq·s ∂2Hγ

∂sν∂sν̄

(G.2)
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= − (2π)/D Ĥγ (q)

∫
d/Dσ e−iq·σ (q · σ)2

|σ |D . (G.3)

The remaining integral is readily computed in hyper-spherical coordinates:∫
d/Dσ e−iq·σ (q · σ)2

|σ |D (G.4)

= |q|2A/D −1

∫
s/D −1 ds

1

sD

∫ π

0
dθ sin/D −2 θ(s cos θ)2 e−iqs cos θ (G.5)

= |q|2 π/D/2

�(/D/2)
ln (1/|q|ξ) , (G.6)

where we have imposed a short-distance cutoff at s = ξ to render the integral convergent. The
spatial Fourier transform evaluated in the present appendix, together with the temporal one,
converts the differential (in time), integro-differential (in space) equation of motion (55) into
an algebraic form; see equation (59).
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